Ура пятницо!
Задача 1. 4*4
В коробке 16 шариков. Четыре шарика на четыре шарика. Необходимо убрать 6 шариков, но так, чтобы в каждой строке и в каждой колонке было четное количество шариков.
Решение:
Имеется 9 кругов. Необходимо не отрывая руки 4-мя прямыми линиями зачеркнуть все шарики.
Решение :
Также, чтобы не потерялось альтернативное решение из комментариев, сохраняю его в заметке.
Задача 3. Две кучки
Имеются 50 монеток. С одной стороны все монетки белые, с другой все черные. Изначально все лежат белой стороной кверху. Вы закрываете глаза и в произвольном порядке 10 монет переворачиваются черной стороной кверху. Необходимо предложить стратегию при которой у вас появятся две кучки монеток в каждой из которой будут лежать одинаковое количество монеток перевернутых черной стороной кверху.
Решение:
В берете из общей кучи монеты и переворачивая кладете отдельно. Зная, что черных монет 10 вам нужно, для полной уверенности, перевернуть 10 монет в другую кучку. В том случае если вы даже берете черные монеты - они становятся белыми в другой кучке. В итоге у час равное количество черных монет в двух кучках.
Задача 2 в её приведённой формулировке. Решение с тремя линиями вместо четырёх. Линии проводятся, как в букве Z, положенной на бок и затем сильно вытянутой по вертикали. Первая линия пересекает сверху вниз левый ряд кругов, уходит далеко-далеко вниз. От конца первой линии чертим вторую так, чтобы она прошла через центр круга, находящегося посередине. Эта вторая линия пересечёт также и два остальных круга, лежащих на средней вертикали. Продолжаем вторую линию достаточно высоко вверх, а затем чертим третью линию строго вниз, чтобы она пересекла третью вертикаль.
ОтветитьУдалитьЗадача 3. Не понял предлагаемое решение (видимо, потому что так и не понял условия). Вы не могли бы описать, сколько конкретно монет из какого места берётся, куда кладётся?
Пока могу высказать возражение, что если после ваших действий в итоге получились две кучки с чёрными и белыми монетами, то я могу в одной кучке перевернуть одну белую монету, а в другой одну чёрную и утверждать, что такое распределение монет также было возможно до того, как вы начали собирать кучки. А действия ваши не должны были бы при таком начальном распределении отличаться, так как в вашем распоряжении находилась ровно та же информация.
>Задача 2
ОтветитьУдалитьА можно картинку? Мозг просто взрывается )))
>Задача 3
1. 50 монет перевернуто белой стороной вверх
2. Переворачиваем 10 монет черной стороной вверх
3. Все 50 монет пока в одной куче
4. Вы берете одну монетку (любую), переворачиваете и откладываете в сторону
5. Так поступаете с 9 другими (любыми) монетками
6. У вас 40 монет в одной куче и 10 монет в другой
Случай 1. Все монетки в куче 1 выбранные нами были белыми.
В этом случае все монетки во второй куче после перевертыша стали черные. Имеем 10 черных сторон монеток в одной куче и 10 черных сторон монеток в другой
Случай 2. Не все монетки в куче 1 - белые
Например 3 монетки попались черные. В этом случае
--- в первой куче 10-3 = 7 монеток черной стороной вверх
--- во второй куче 7 монеток черной стороной вверх и 3 монетки белой стороной вверх
7 против 7
Случай 3. Все монетки которые мы взяли из первой кучи и перевернули во вторую - черные. Поскольку все монетки мы перевернули, то во второй куче черных монеток 0. В перой, поскольку мы все 10 монеток забрали - 0
0 против 0
Ответ на 2:
ОтветитьУдалитьНе знаю, как вставить картинку))
Клево!
ОтветитьУдалитьОтвет на задачку 2 сразу же пришел в ум, как и у Анонимного, но по заданию же надо было 4..., вот с 4 никак не получилось)). Спасибо за блог, очень рада, что нашла его!
ОтветитьУдалитьВ третьей задаче если можно ломать, то просто все монеты из общей кучи ломаем пополам и кладем одну половинку в одну кучу не переворачивая, вторую - в другую. Получаем две одинаковые кучи, в каждой из которых по 10x0.5=5 монет черной стороной кверху.
ОтветитьУдалить>В третьей задаче если можно ломать, то просто все монеты из общей кучи ломаем пополам
ОтветитьУдалитьБрутально, но согласен)))
Жена сегодня предложила ответ про две кучки. Монетки рифленные - пальцами можно пощупать ;)
ОтветитьУдалитьВот решение для Задачи 2 из трех линий: https://rapidshare.com/files/2399165066/solution.png
ОтветитьУдалить